User Tools

Site Tools


literature

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
literature [2023/05/16 15:52] – [Genomospecies] chkliterature [2023/10/18 13:30] (current) chk
Line 5: Line 5:
   * Kado (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by //Agrobacterium tumefaciens//. Front Microbiol. 5:340. [[https://doi.org/10.3389/fmicb.2014.00340]]   * Kado (2014) Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by //Agrobacterium tumefaciens//. Front Microbiol. 5:340. [[https://doi.org/10.3389/fmicb.2014.00340]]
   * Nester (2015) //Agrobacterium//: nature’s genetic engineer. Front Plant Sci 5:730. [[https://doi.org/10.3389/fpls.2014.00730]]   * Nester (2015) //Agrobacterium//: nature’s genetic engineer. Front Plant Sci 5:730. [[https://doi.org/10.3389/fpls.2014.00730]]
-  * Hwang et al. (2017) The Arabidopsis Book. //Agrobacterium//-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186. [[https://doi.org/10.1199/tab.0186]] +  * Hwang et al. (2017) //Agrobacterium//-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186. [[https://doi.org/10.1199/tab.0186]] 
-  * Weisberg et al. (2023) Virulence and ecology of agrobacteria in the context of evolutionary genomics. Annu Rev Phytopathol. [[https://doi.org/10.1146/annurev-phyto-021622-125009]] +  * Hooykaas (2023) The Ti plasmid, driver of Agrobacterium pathogenesis. Phytopathology 113:594–604. [[https://doi.org/10.1094/PHYTO-11-22-0432-IA]] 
 +  * Weisberg et al. (2023) Virulence and ecology of agrobacteria in the context of evolutionary genomics. Annu Rev Phytopathol. 61:1-23. [[https://doi.org/10.1146/annurev-phyto-021622-125009]]
  
 ===== Genomospecies ===== ===== Genomospecies =====
 +  * Popoff et al. (1984) Position taxonomique de souches de Agrobacterium d’origine hospitalière. Ann Inst Pasteur Microbiol 135, 427–442. [[https://doi.org/10.1016/S0769-2609(84)80083-6]]
 +    * Classification of agrobacteria into distinct groups (i.e., genomospecies) based on phenotype and overall genome similarity (DNA-DNA hybridization)
   * Costechareyre et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microb Ecol 60:862–872. [[https://doi.org/10.1007/s00248-010-9685-7]]   * Costechareyre et al. (2010). Rapid and efficient identification of Agrobacterium species by recA allele analysis: Agrobacterium recA diversity. Microb Ecol 60:862–872. [[https://doi.org/10.1007/s00248-010-9685-7]]
   * Lassalle et al. (2011). Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781. [[https://doi.org/10.1093/gbe/evr070]]   * Lassalle et al. (2011). Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biol Evol 3:762–781. [[https://doi.org/10.1093/gbe/evr070]]
-    * Use the BV1-G8-C58 as reference, microarray hybridization to check presence/absence of specific genomic regions in 25 different strains; strains classified to the same genomospecies are more similar.+    * Use strain C58 (BV1 G8as the reference, performed microarray hybridization to check presence/absence of specific genomic regions in 25 different strains; strains classified to the same genomospecies are more similar.
     * G8 named as //Agrobacterium fabrum//     * G8 named as //Agrobacterium fabrum//
   * Shams et al. (2013). Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 36:351–358. [[https://doi.org/10.1016/j.syapm.2013.03.002]]   * Shams et al. (2013). Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 36:351–358. [[https://doi.org/10.1016/j.syapm.2013.03.002]]
   * Lassalle et al. (2017) Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium. Genome Biol Evol 9, 3413–3431. [[https://doi.org/10.1093/gbe/evx255]]   * Lassalle et al. (2017) Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium. Genome Biol Evol 9, 3413–3431. [[https://doi.org/10.1093/gbe/evx255]]
   * Weisberg et al. (2020). Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368:eaba5256. [[https://doi.org/10.1126/science.aba5256]]   * Weisberg et al. (2020). Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368:eaba5256. [[https://doi.org/10.1126/science.aba5256]]
 +    * Large-scale ANI analysis
   * Chou et al. (2022). Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 20:16. [[https://doi.org/10.1186/s12915-021-01221-y]]   * Chou et al. (2022). Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 20:16. [[https://doi.org/10.1186/s12915-021-01221-y]]
     * Genome-scale phylogeny; comparison of divergence based on average nucleotide identity (ANI) and gene content; focused analysis on secretion systems and plasmids     * Genome-scale phylogeny; comparison of divergence based on average nucleotide identity (ANI) and gene content; focused analysis on secretion systems and plasmids
- 
- 
- 
- 
- 
- 
  
  
Line 51: Line 48:
  
 ===== Plasmids ===== ===== Plasmids =====
 +  * Gordon and Christie (2014). The Agrobacterium Ti plasmids. Microbiol Spectr 2, 2.6.19. [[https://doi.org/10.1128/microbiolspec.PLAS-0010-2013]]
 +  * Weisberg et al. (2020). Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368:eaba5256. [[https://doi.org/10.1126/science.aba5256]]
 +  * Weisberg et al. (2022) Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. Philos Trans R Soc Lond B Biol Sci 377, 20200466. [[https://doi.org/10.1098/rstb.2020.0466]]
  
  
Line 59: Line 59:
  
 ===== Type VI Secretion System (T6SS) ===== ===== Type VI Secretion System (T6SS) =====
 +  * Many, but not all, species within the agrobacteria-rhizobia complex have a conserved gene cluster that encode the T6SS. This system is involved in interbacterial competition.
 +
 +  * Lin et al. (2013) Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLOS ONE 8, e67647. [[https://doi.org/10.1371/journal.pone.0067647]]
 +  * Lin et al. (2014). Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLOS Pathog 10, e1003991. [[https://doi.org/10.1371/journal.ppat.1003991]]
 +  * Ma et al. (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16, 94–104. [[https://doi.org/10.1016/j.chom.2014.06.002]]
 +  * Wu et al. (2019) Plant-pathogenic Agrobacterium tumefaciens strains have diverse type VI effector-immunity pairs and vary in in-planta competitiveness. Mol Plant Microbe Interact 32, 961–971. [[https://10.1094/MPMI-01-19-0021-R]]
 +  * Wu et al. (2021) Diversification of the type VI secretion system in agrobacteria. mBio 12, e01927-21. [[https://10.1128/mBio.01927-21]]
 +  * Chou et al. (2022). Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 20:16. [[https://doi.org/10.1186/s12915-021-01221-y]]
 +    * Molecular evolution of the T6SS genes in BV1; diversity of effector genes.
 +
 +
 +
 +===== Transcriptome =====
 +  * Haryono et al. (2019) Differentiations in gene content and expression response to virulence induction between two Agrobacterium strains. Front Microbiol 10, 1554. [[https://doi.org/10.3389/fmicb.2019.01554]]
 +  * Waldburger et al. (2023) Transcriptome architecture of the three main lineages of agrobacteria. mSystems 8, e00333-23. [[https://doi.org/10.1128/msystems.00333-23]]
 +
 +
 +===== Transformation =====
 +  * AMT: //Agrobacterium//-Mediated Transformation; Agrobacteria-Mediated Transformation
 +
 +===== Host Range =====
 +  * Hwang et al. (2013) Characterization and host range of five tumorigenic Agrobacterium tumefaciens strains and possible application in plant transient transformation assays. Plant Pathol 62, 1384–1397. [[https://doi.org/10.1111/ppa.12046]]
 +
  
 +===== Microbiota =====
 +  * Faist et al. (2016) Grapevine (Vitis vinifera) crown galls host distinct microbiota. Appl Environ Microbiol 82, 5542–5552. [[https://doi.org/10.1128/AEM.01131-16]]
 +  * Wang et al. (2023) Soil inoculation and blocker-mediated sequencing show effects of the antibacterial T6SS on agrobacterial tumorigenesis and gallobiome. mBio 14, e00177-23. [[https://doi.org/10.1128/mbio.00177-23]]
  
  
literature.1684252332.txt.gz · Last modified: 2023/05/16 15:52 by chk